

JURNAL TEKNIK SIPIL - ARSITEKTUR

PERBANDINGAN BIAYA DESAIN PERKERASAN ASPAL DENGAN UMUR RENCANA PADA PROYEK JALAN BATAS KOTA CILEGON-CIBALIUNG DAN CITEREUP-TANJUNG LESUNG

Jimmy Nugroho

Program Studi Teknik Sipil Universitas Jayabaya

Darmadi

Program Studi Teknik Sipil Universitas Jayabaya

Abstract

Roads are an important infrastructure in supporting economic development in an area. Good quality is prioritized for the safety and comfort of road users. Improvement of the Beru – Cinandang Road Section (STA 0+000-9+410), Pandegelang Regency consists of pavement thickness, and calculation of the budget plan.

The methods used include Road Pavement Design Manual Number 02 / M / BM / 2013 and calculating the Cost Budget Plan using the Analysis of Work Unit Price (AHSP) for the Public Works Balitbang 2012 Public Works, from each of the pavement thickness planning results. The research data used include primary and secondary data from the Cilegon-Cibaliung City and Citereup-Tanjung Lesung Boundary Road Reconstruction project

The results of this study are road pavement planning with a road body width of 7 m, planning pavement thickness with Laston and Asbuton with Laston Layer 4 cm thick, Laston layer between AC-BC 6 cm thick, Laston AC Base base layer 16 thick with top foundation in the form of stone broke the class A 30 cm along with the bottom foundation of the selected heap with a thickness of 30 cm and calculated the Comparison of the Budget Plan for 20,989,956,000.

Key words: Pavement Thickness Planning, cost comparison

PENDAHULUAN

Transportasi merupakan urat-nadi kehidupan politik, ekonomi, sosial-budaya dan pertahanan keamanan nasional yang sangat vital perannya dalam ketahanan nasional. Sistem transportasi yang handal, dengan memiliki kemampuan daya dukung struktur tinggi, dan kemampuan jaringan yang efektif dan efisien dibutuhkan untuk mendukung pembangunan wilavah. pengembangan ekonomi, mobilitas manusia, barang dan jasa yang muaranya meningkatkan daya saing nasional.

Akar permasalahan kerusakan jalan akibat beban yang berlebih adalah menaikan mutu campuran beraspal dengan cara memperbaiki atau meningkatkan mutu aspal (bitumen). Aspal sendiri merupakan bahan pengikat yang memegang peranan penting dalam kuat tidaknya suatu campuran beraspal. Untuk meningkatkan mutu aspal dapat dilakukan dengan menambahkan berbagai macam bahan tambah ke dalam campuran aspal. Bahan tambah tersebut dapat berupa aspal alam, polimer ataupun limbah.

Asbuton (Aspal Batu Buton) adalah salah satu hasil alam yang dimiliki oleh Indonesia. danya deposit Asbuton merupakan peluang dan sekaligus tantangan bagi para peneliti, praktisi, dan semua pihak yang terkait dengan perkerasan jalan. Sebagai peluang, Asbuton merupakan aspal alam dengan deposit terbesar dibanding deposit aspal alam lainnya di dunia, dan dapat dimanfaatkan sebagai bahan pengikat pada perkerasan jalan menggantikan aspal minyak. Sebagai tantangan, penggunaan Asbuton sebagai bahan pengikat pada perkerasan jalan sesederhana atau semudah penggunaan aspal minyak, tapi secara prinsip para peneliti sudah menunjukkan bahwa Asbuton dapat digunakan pada perkerasan jalan meski masih terdapat beberapa kendala pada pelaksanaannya.

Sedangkan karakteristik campuran Laston pada kadar aspal optimumyang menggunakan campuran aspal reject sebagai bahan dasar yang dikondisikan dalam STOA (short term oven ageing) didapat nilai stabilitas campuran adalah 1658,56 kg. Nilai flow campuran adalah 3,98 mm. Untuk nilai Marshall quotien didapat nilai pada campuran adalah 435,39. Sementara untuk nilai VIM, VMA dan VFB berturut-turut adalah 4,54%; 15,447% dan 70,589%. Dari perbandingan

karakteristik hasil campuran laston AC-BC pada kadar aspal optimum dengan hasil campuran laston AC-BC dalam kondisi STOA (Short Term Oven Ageing) dapat dilihat bahwa kualitas nilai campuran menurun akibat pemanasan yang terlalu lama pada saat pencampuran sehingga campuran menjadi Oleh karena itu, Sistem lebih getas. perkerasan dengan menggunakan desain asbuton dan laston perlu mendapat perhatian yang penting guna mendapatkan harga yang ekonomis vang hasilnya kondisi ialan baik fungsional, serta mendukung secara perekonomian masyarakat yang berproduksi di ruas jalan tersebut.

Tujuan penelitian ini, adalah untuk melakukan evaluasi terhadap perkerasan perkerasan yang baru dalam biaya pemeliharaan. Dan untuk mengevisiensikan biaya mengetahui elevasi muka banjir baik yang ada saat ini maupun masa akan datang sebagai dampak dari kenaikan harga minyak bumi sebagai bahan campuran aspal dengan pola perencanaan yang telah baku.

LOKASI PENELITIAN

Gambar 1. Peta Jalan Nasional Provinsi Banten

Infrastruktur jalan di Kabupaten Kota Serang dan Kabupaten Pandeglang ruas jalan batas kota cilegon-cibaliung dan citereup-tanjung lesung mempunyai peran yang vital dalam transportasi nasional Jalur tersebut merupakan Jalan Nasional Lintas Selatan Pulau Jawa dan Strategis Pariwisata Nasional Kawasan (KSPN) berdasarkan PP No. 50 Tahun 2011 Rencana Induk Pembangunan Tentang Kepariwisataan Nasional jalur pariwisata Ujung Kulon dan Tanjung Lesung dimana ruas tersebut merupakan Lintas Selatan Pulau Jawa merupakan urat nadi Kawasan Ekonomi Khusus (KEK) dengan melayani sekitar 92% angkutan penumpang dan 90% angkutan barang pada jaringan jalan yang ada. ruas jalan nasional batas kota cilegon-Cibaliung Dan

Citereup-Tanjung Lesung dengan panjang total fungsional sepanjang 9,41 Km, lebar eksisting jalan saat ini bervariasi antara 4,5-7 meter dan masih terdapat 2,1 Km jalan dengan lebar belum standar, untuk menuju lebar standar maka dilakukan kegiatan penanganan pelebaran pada ruas jalan dengan lebar kurang dari 7 meter (spot-spot) di tahun anggaran 2018 – 2019. Berdasarkan data kondisi jalan nasional semester II Tahun 2017 kondisi eksisting ruas jalan tersebut dengan panjang total penanganan 9,41 Km antara lain kondisi baik 31.55%, kondisi sedang 58.06%, kondisi ringan 8.79%, dan rusak berat 1.60%. Ada pun jenis kerusakan jalan tersebut adalah retak (Cracking), bergelombang dan berlubang (potholes).

OBYEKPENELITIAN

Gambar 2. Peta Jalan Nasional Provinsi Banten Km 0+000 – Km 9+410

Objek penelitian berada di jalan Bts. kota cilegon – cibaliung dan citerep – tanjung lesung pada yaitu sepanjang 9.41 km. Objek penelitian tepatnya berada di area Bts. Kota Cilegon.

ANALISA DATA

Setelah mendapatkan data yang diperlukan, langkah selanjutnya adalah mengolah data tersebut. Pada tahap mengolah atau menganalisis data dilakukan dengan menghitung data digunakan kembali sebagai data untuk menganalisis yang lainnya dan berlanjut seterusnya sampai mendapatkan hasil akhir tentang barbedaan biaya pekerjaan perkerasan aspal buton (asbuto) dan aspal minyak (laston) tersebut.

PERENCANAAN PERKERASAN LENTUR 4.1 DATA HASIL PENGAMATAN LAPANGAN

Inventarisasi Jalan

Dari hasil inventori jalan yang dilakukan, dapat dilihat kondisi existing jalan pada ruas jalan Bts. Kota Cilegon – Cibaliung dan Citereup – Tanjung Lesung dikategorikan sebagai jalan yang rusak sedang hingga rusak berat. Hal ini terlihatdari banyaknya aspal yang mengelupas sehingga jalan cenderung berlubang.

Perencanaan perkerasan lentur (*flexible pavement*) pada ruas jalan tersebut, dilakukan pada km 0+000 s/d 9+410. Sehingga panjang total perkerasan yang direncanakan adalah 9,410 Km.

Kondisi Tanah

Kekuatan dan keawetan konstruksii perkerasan jalan sangat tergantung pada sifatsifat dan daya dukung tanah dasar. Dalam pedoman ini diperkenalkan modulus resilien (MR) sebagai parameter tanah dasar yang digunakan dalam perencanaan Modulus resilien (MR) tanah dasar juga dapat diperkirakan dari CBR standar dan hasil atau nilai tes soil index.

Tabel 1. Data Rekap Tanah CBR

No	STA	Jarak	Kedalaman	CBR (%)
1	0+000	110	73	3,5
2	0+500	160	73	3,8
3	1+000	124	78	2,3
4	1+500	190	80	3,2
5	2+000	130	80	7,0
6	2+500	130	80	6,4
7	3+000	110	67	6,1
8	3+500	150	66	5,2
9	4+000	-	69	6,9
10	7+300	50	70	6,3
11	7+650	110	75	9,1
12	8+000	100	71	10,9
13	4+500	170	50	8,9
14	5+000	45	75	13
15	5+500	180	50	5,2
16	6+000	195	50	10
17	6+500	120	60	6,9
18	7+000	110	60	20,5
19	8+500	120	58	9,4
20	9+000	-	70	6,9
21	9+410	245	90	3,5

Sumber : Data Survey

Analisa Data CBR

CBR rata-rata = nilai CBR rata-rata yang diperoleh data yang ada

$$\frac{\sum_{1}^{n} CBR}{n}, n = Jumlah data$$

$$CBR \ rata - rata = \frac{155}{21}$$

$$CBR \ rata - rata = 7,38$$

SD = Standar Deviasi = simpangan baku

$$= \sqrt{\frac{n\left(\sum_{1}^{n} CBR\right) - \left(\sum_{1}^{n} CBR\right)}{n(n-1)}}$$

$$= \frac{21 \times (155) - (155)}{21 \times (21-1)} = \frac{3100}{420} = 7.38$$

$$= \sqrt{17.38} = 4.10$$

CBR karateristik = CBR rata² -1.3 x stnd. deviasi CBR karateristik = $7.38-1.3 \times 4.10 = 2.05 \approx 2.50$

Data Lalu - lintas

Berdasarkan hasil survey yang dilakukan, dapat diperolehdata lalu lintas kendaraan pada tahun 2017 pada ruas Bts. Kota Cilegon – Cibaliung dan Citereup – Tanjung Lesung. Adapun data survey dapat dilihat dibawah ini.

Tabel 2. Data Pertumbuhan Jumlah Kendaraan

		Ju	mlah Ll	HR
N	Jenis	Tah	Tah	Tah
0	Kendaraan	un	un	un
		2015	2016	2017
1	Sepeda Motor	20	27	50
2	Sedan/jeep/sta	13	19	28
	tion wagon	13	19	20
	Pick			
3	up/oplet/mini	19	23	25
	bus			
	Pick			
4	up/mikro/mob	20	29	31
	il hantaran			
5	Bus kecil	8	25	27
6	Bus besar	0	19	19

		Ju	mlah Ll	HR
N	Jenis	Tah	Tah	Tah
0	Kendaraan	un 2015	un 2016	un 2017
7	Truck 2 sumbu (4 roda)	17	22	29
8	Truck 2 sumbu (6 roda)	21	25	26
9	Truck 3 sumbu	0	5	11
1 0	Truck gandeng	0	4	8
1	Truck semi trailer	0	6	7
1 2	Kendaraan tidak bermotor	0	4	6

Sumber: Data Survey

Analisa Data LHRT

Perhitungan kumulatif beban sumbu standar (CESA) dalam penelitian ini, digunakan data LHR Ruas Jalan Pasauran-Cibaliung dan Citereup-Tanjung Lesung 2017, 1-lajur 2-arah terbagi (1/2 D). Data LHR yang digunakan adalah data LHR dari arah Pasauran – Tanjung Lesung

Dalam analisis lalu lintas, terutama untuk penentuan volume lalu lintas pada jam sibuk dan lintas harian rata – rata tahunan (LHRT) agar mengacu pada Manual Kapasitas Jalan Indonesia (MKJI). LHRT yang dihitung adalah untuk semua jenis kendaraan kecuali sepeda motor, ditambah 30% jumlah sepeda motor. Sangat penting untuk memperkirakan volume lalu lintas realistis.Terdapat yang kecenderungan historis secara untuk menaikkan data lalu lintas untuk meningkatkan justifikasi ekonomi.Hal ini tidak boleh dilakukan untuk kebutuhan apapun.desainer harus membuat survey cepat secara independen untuk memverifikasi data lalu lintas jika terdapat keraguan terhadap data

Tabel 3. Faktor Pertumbuhan Lalu Lintas (i) Minimum Untuk Desain

(-) -:					
Uraian	2001 – 2020	> 2021 – 2030			
Arteri dan Perkotaan (%)	5	4			

Kolektor Rural (%)	3,5	2,5
Jalan Desa (%)	1	1

sumber : Manual Desain Perkerasan Lentur Bina Marga Tahun 2013

Untuk menghitung pertumbuhan lalu lintas selama umur rencana dihitung sebagai berikut:

$$R = \frac{(1+0.01 \ i)^{UR} - 1}{0.01 \ i}$$

Dimana

R = faktor pengali pertumbuhan lalu lintas

i = tingkat pertumbuhan tahunan (%)

UR = umur rencana (tahun)

Beban sumbu standar kumulatif atau Cumulative Equivalent Single Axle Load (CESA) merupakan jumlah kumulatif beban sumbu lalu lintas desain pada lajur desain selama umur rencana, yang ditentukan sebagai

$$ESA = \left(\sum_{jenis \ kendaraan} LHRT \ x \ VDF\right)$$

 $CESA = ESA \times 365 \times R$

Dengan:

ESA = lintasan sumbu standar ekivalen (equivalent standard axle) untuk 1 (satu) hari

LHRT = lintas harian rata – rata tahunan untuk jenis kendaraan tertentu

CESA = kumulatif beban sumbu standar ekivalen selama umur rencana

R = faktor pengali pertumbuhan lalu lintas

Tabel 4. Klasifikasi Kendaraan dan Nilai VDF Standar

	Jenis Kendaraan						Distribusi tipikal (%)		Faktor Ekivalen Beban		
	Jenis K	endaraan	Uraian	Konfigurasi sumbu		Kelom pok samba	Semua kendaraan	Semua kendaraan bermotor	(VDF) (ESA / kendaraan)		
	Klasifi kasi Lama	Alterna tif				sumou	bermotor	kecuali sepeda motor	VDF ₄ Pangkat ⁴	VDF ₁ Pangkat	
	1		UND REAL TOPOT	13			30.8				
	2,3,4	2, 3, 4	station wayon	1.1		2	107	74,3	1		
	18	10	WAR THEN	12		-	- 13	1,00	13	1/2	
	70	- 50	But Select	12		- 2	7,0	0,20	1,0	1,2	
	EA.I	6.1	TOX 2 SUPSU-CASSINGAL	11	PUBLIC VIOLE	- 1	4.6	4.60	0,3	8,2	
	192	62	TICK 2 SURSU-HIGGS	12	SANAN, SASIR, SHIS, SHIRAN	-	- 1		6.8	2,3	
	101.1	7.3	TOTAL STREET, CANSO SERVICE	12	mast year	- 2			E/	27	
e e	1012	7.2	TAX 2 SUPPLY SHEETS	12	BASA, pask, best, seman.	2		- 80	1,8	17	
NIAGA	882.1	8.1	TOTAL STORES SHIP	12	FORBIT STOR	-	3.6	6.50	13	2,5	
	1022	82	TOTAL STOTE OF SERVICE	12	MANAGEMENT DESCRIPTION	-	3,8	5.50	12	11,2	
₹ .	721	9.7	True a sumay - ringan	1,42	HARMON OF THE		3.5	5.60	. 7,8	11/2	
2	792	92	TOUT TOURS - SHOWS	122	TANKS, PARP, THEIR, SHOTES	1		5,60	28,1	1,13	
ě o	793	13	THUR S EUROSU - BANK	112	250 500 500 500	1	61	0,10	28,3	122	
KENDARAAN	70	10	IRIX 2 SUPRISSES MERE! perant 2 sumbs	1202			0,6	6,70	36.5	90,4	
	721	-11	Tox 4 sundu - Saller	12-22		4	EJ.	6,60	13,6	243	
	762.1	12	THAT SURSU YERE!	1.22 - 22		-	6.7	1.00	19.2	33,2	
	162.2	- 13	TOTAL STORES SERVE	12122		-		1,00	70,3	100	
	753	14	TOLY SUND YEAR	122-222			- 67	159	41.5	10.7	

No	Jenis Kendaraan	Konfigurasi Sumbu	LHR	С	VDF	ESA4
	a	b	С	d	e	f= (bxcxdxe)
1	Sepeda Motor	1,1	50	0,6	0,05	1,65
2	Sedan/jeep/station wagon	1,1	28	0,6	0,05	0,92
3	Pick up/oplet/mini bus	1,2	25	0,6	0,16	0,16
4	Pick up/mikro/mobil hantaran	1,2	31	0,6	0.2	4,46
5	Bus kecil	1,2	27	0,9	0,3	8,74
6	Bus besar	1,2	19	0,9	1,0	20,25
7	Truck 2 sumbu (4 roda)	1,2	29	0,9	1,6	50,11
8	Truck 2 sumbu (6 roda)	1,2	26	0,9	7,3	204,98
9	Truck 3 sumbu	1,22	11	0,9	7,6	88,16
10	Truck gandeng	1,22	8	0,9	28,1	248,83
11	Truck semi trailer	1,22	7	0,9	36,9	283,61
12	kendaraan tidak bermotor	1,1	6	0,6	0,05	0,1
	JUMLAH		883			911

$$R = \frac{(1+0.01i)^{UR} - 1}{0.01i}$$

$$R = \frac{(1+0.01 \times 0.035)^{20} - 1}{0.01 \times 0.035} = 20,06$$

$$CESA_4 = ESA_4 \times 365 \times R$$

$$CESA_4 = 911 \times 365 \times 20,067$$

$$CESA_4 = 6,672,578 ESAL$$

Nilai TM kelelahan lapisan aspal (TM lapisan aspal) untuk kondisi pembebanan yang berlebih di Indonesia adalah berkisar 1,8 - 2. Nilai yang akurat berbeda-beda tergantung dari beban berlebih pada kendaraan niaga di dalam kelompok truk. memberikan dasar untuk VDF kelompok kendaraan dan perhitungan TM untuk Indonesia. Nilai CESA tertentu (pangkat 4) untuk desain perkerasan lentur harus dikalikan dengan nilai TM untuk mendapatkan nilai CESA5, CESA5 = (TM x CESA4).

$$CESA_5 = ESA_4 \ x \ TM$$

 $CESA_5 = 6,672,578 \ x \ 1.9$
 $CESA_5 = 12,677,899 \ ESAL$

Menentukan Tebal Perkerasan

Pengenalan Prosedur Rinci untuk Desain Pondasi Jalan Desain pondasi jalan untuk tanah dengan nilai CBR < 6% adalah perbaikan tanah dasar dan lapis penopang (capping layer). Bagan Desain 2 memberikan solusi untuk desain pondasi jalan minimum dapat dilihat pada Tabel. 4.4 nialai CBR tanah dasar

Tabel 6. Data Solusi Desain Pondasi Jalan Minimum³

Bagan Desain 2: Solusi Desain Pondasi Jalan Minimum³

CBR Tanah Dasar		Prosedur desain		lalu lintas lajur desain umur rencana 40 tahun (juta CESA _{\$})			
OUT TURNST DUGG	Kelas Kekuatan Tanah Dasar	pondasi	Deskripsi struktur pondasi jalan	<2	2-4	>4	
				Tebal minimum peningki tanah dasar			
≥6	SG6			Tidak perlu peningkatan			
5	SG5		Perbaikan tanah dasar meliputi bahan			100	
4	SG4	A	stabilisasi kapur atau timbunan pilihan	100	150	200	
3	SG3		(pemadatan berlapis ≤200 mm tebal	150	200	300	
2.5	SG2.5		lepas)	175	250	350	
Tanah eksp	ansif (potential swell> 5%)	AE		400	500	600	
Perkerasan lentur SG1 aluvial ¹			Lapis penopang (capping layer) (2)(4)	1000	1100	1200	
diatas tanah lunak ⁵		В	Atau lapis penopang dan geogrid (2(4)	650	750	850	
Tanah gambut dengan HRS atau perkerasan Burda untuk jalan kecil (nilai minimum – peraturan lain digunakan)		D	Lapis penopang berbutir ⁽²⁾⁽⁴⁾	1000	1250	1500	

- Nilai CBR Japangan CBR rendaman tidak releva

- Dulats lagis peringang ruma catasumanan mementum sementum perindipangkan semua iau kritis. Gelebentum tembahan mungihi beberlak, desai hari pemperjerimbangkan semua iau kritis. Felal lagis pencapang daput di urungi 300 mmi jai tarah adi dipadatah milambah harik kering pada saat konstuksi Diandia oleh kepadatah yang rendah dan CBR apangan yang rendah di bawah daerah yang dipadatkan

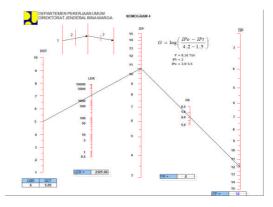
Untuk CBR tanah dasar 2.5% dan CESA5 sebesar 18.709.348 ESAL maka penanganan desain pondasi jalan menggunakan metode desain A (untuk tanah normal). Untuk kondisi tersebut, dilakukan perbaikan tanah dasar menggunakan lapis penopang (capping layer) sebesar 350 mm.

Katalog Desain Desain perkerasan dalam Bina Marga 2013 telah memudahkan desainer untuk menentukan tebal lapis perkerasan yang didasarkan pada pembebanan pertimbangan biaya terkecil diberikan dalam desain 3 maupun 3A. Nilai CESA5 yang yang digunakan sebesar 12,677,899 ESAL. Tebal lapis perkerasannya dapat dilihat seperti Tabel berikut ini:

Tabel 7. Data Solusi Pondasi Jalan Minimum³

- 4	Lancas and	STRUKTUR PERKERASAN							2180200
90.00 0.00 0.00 0.00 0.00	FF1	FF2	FF3	FF4	FF5	FF6	FF7	FF8	FF9
Solusi yang dipilih	-	0.0	A Parl	(000)	Lihat C	atatan.3	Ethat Catatan 3		
Pengulangan beban sumbu desain 20 tahun di lajur rencana (pangkat 5) (10° CESA _n)	1-2	2-4	4-7	C 18	10 - 20	20 - 30	30 - 50	50 - 100	100 - 200
		KETEBA	LAN LAPIS	PERKERA	SAN (mm)	/			
AC WC	40	40	40	40	40	40	40	40	40)
AC binder	60	(4)	60	(0)	60	60	60	(0)	60
AC Base	0	-70	80	105	145	160	100	210	245
LPA	400	300	3(0	300	300	300	300	300	- 510
Catatan	1	-1	2	2	3	- 3	3	- 3	3

Pada catatan bagian desaian 3A ayat 3 adalah CTB dan pilihan perkerasan kaku (Bagan Desain 3) dapat lebih efektif biaya tapi dapat menjadi tidak praktis jika sumber daya yang dibutuhkan tidak tersedia. Solusi dari FF5-FF9 dapat lebih praktis daripada solusi Bagan desain 3 atau 4 untuk situasi konstruksi


tertentu. Contoh jika perkerasan kaku atau CTB bisa menjadi tidak praktis : pelebaran perkerasan lentur eksisting atau diatas tanah yang berpotensi konsolidasi atau pergerakan tidak seragam (pada perkerasan kaku) atau jika sumber daya kontraktor tidak tersedia.

Direncanakan untuk meningkatkan memperpanjang umur pelayanan jalan raya dalam menentukan tebal lapisan tambahan pada lapisan permukaan yang dihitung dari kondisi perkerasan yang lama. Berdasarkan data existing terdapat tebal masing-masing lapisan, yaitu sebagai berikut:

Tabel 8. Tebal Lapis Perkerasan Laston dari Katalog Desain Dalam Bina Marga 2013

Mai ga 2013	
	Tabel Perkerasan
Lonia Darkarasan	(cm)
Lapis Perkerasan	Alternatif Bahan
	Desain 3A
AC WC	4
AC BC	6
AC Base	15
Lapis Pondasi Atas	30
Kelas A	30
Timbunan Pilihan	35

Hasil analisa dengan menggunakan grafik nomogram 4 didapat ITP dan besarnya nilai ITP untuk segmen rencana dan berdasarkan Tabel lapisan permukaan dan Tabel lapisan pondasi, kemudian dengan menggunakan Tabel koefisien kekuatan relatif untuk lapisan segmen untuk memudahkan pengolahan data hasil perhitungan segmen rencana disajikan dalam bentuk tabel yang dapat dilihat pada Tabel 9 berikut:

Gambar 3. Monogram 4

Tabel 9. Tebal Lapis Permukaan

			1				
	a. Mencari Indeks Tel		[Menggun	nakai	Nomogram]	
	IPo =	lomogram	4	; ITP	_	12	
		2	tomogram	1 -	, 111		12
1.	Menghitung Tebal Per	kerasan		_			
	ITP (Minimal) =	12					
	MATERIAL	Kekuatan Bahan	Koef. Kek	kuatan	Relatif		KETERANGAN
	AC WC Asbuton	MS = 744 (kg)	a1	-	0.35		LAPIS PERMUKAAN
	AC BC	MS = 744 (kg)	a2	-	0.35		LAPIS PONDASI ATAS
	AC Base	MS = 744 (kg)	a3	=	0.38		LAPIS PONDASI BAWAH
	SUSUNAN PE	RKERASAN	Koe	f. Kekı	uatan		TEBAL
	LAPIS PERMUKAAN			0.35			D ₁
	LAPIS PONDASI	$\Delta_L \Delta_\Delta b \Delta$		0.35			D_2
	LAPIS PONDASI BAWAH	0000		0.38			D ₃
	TANAH DASAR						
	ITP =	a ₁ .D ₁ + a ₂ .D ₂ + a ₃ .D	3				
		diambil,	D)2 =	12.00	cm	
			0)3 =	16.00	cm	
	D ₁ =	ITP - a ₂ .D ₂ -	a ₃ .D ₃		4.91	cm	
				≈	5.00	cm	
	CEK BATAS MINIMUM	TEBAL LAPISAN [T.	ABEL 8 MAK	g			
	TEBAL MINIMUM LAST	TON		-	10.00	cm	
	Jadi TEBAL LAPISAN A	ASBUTON [FINAL] (*))	=	5.00	cm	[OK!!]

Direncanakan untuk meningkatkan atau memperpanjang umur pelayanan jalan raya dalam menentukan tebal lapisan tambahan pada lapisan permukaan yang dihitung dari kondisi perkerasan yang lama. Berdasarkan data existing terdapat tebal masing-masing lapisan, yaitu sebagai berikut:

Tabel 10. Tebal Lapis Perkerasan Asbuton

	Tabel Perkerasan
Lapis Perkerasan	(cm)
Lapis Ferkerasan	Alternatif Bahan
	Desain 3A
AC Asbuton	5
AC BC	6
AC Base	15
Lapis Pondasi Atas	30
Kelas A	
Timbunan Pilihan	35

Perhitungan Anggaran Biaya

1) Pekerjaan Tanah

Timbunan Pilihan (m3)

Lebar jalur : 3.5 m x 2 = 7 mTebal perkerasan : 30 cm = 0.3 mPanjang jalan : 9.410 m

Volume $\therefore 7,410 \text{ m}$

9,410 m = 861 m3

lalu dalam mengurug tanah itu terjadi pemadatan, nilainya sekitar 1,2 x volume urugan tanah, jadi tanah yang dibutuhan = 1,2 x 861 m3 = 1,033.20 m3

2) Pekerjaan Perkerasan Berbutir

Lapisan pondasi bawah agregat kelas A

(m3)

Lebar jalur : 3.5 m x 2 = 7 mTebal perkerasan : 30 cm = 0.3 mPanjang jalan : 9,410 m

Volume : 7 m x 0.3 m x

9410 m = 861 m3

3) Pekerjaan Aspal

Laston lapis antara AC-BC

Lebar jalur: 3.5 m x 2 = 7 mTebal perkerasan: 6 cm = 0.06 mPanjang jalan: 9,410 mVolume: 7 m x 0,06 m x

9410 m x 2,3 = 9,090.06 tonAsbuton lapis antara AC-BC

Lebar jalur : 3.5 m x 2 = 7 mTebal perkerasan : 12 cm = 0.12 m

Panjang jalan : 9,410 m

Volume : 7 m x 0,12 m x

9410 m x 2,3 = 18,180.12 ton Laston lapis pondasi AC Base

Lebar jalur : 3.5 m x 2 = 7 mTebal perkerasan : 15 cm = 0.15 m

Panjang jalan : 9,410 m

Volume : 7 m x 0,15 m x

9410 m x 2,3 = 2,272.51 ton

4) Pekerjaan Overlay

Laston lapis aus AC-WC

Lebar jalur : 3.5 m x 2 = 7 mTebal perkerasan : 4 cm = 0.04 mPanjang jalan : 9,410 mVolume : 7 m x 0,04 m x

9410 m x 2,3 = 6,060.04 tonAsbuton lapis aus AC-WC

Lebar jalur3.5 m x 2 = 7 mTebal perkerasan5 cm = 0.05 mPanjang jalan9,410 mVolume7 m x 0.05 m x

9410 m x 2,3 = 7,575.05 ton

Tabel 11. Rekapitulasi Anggaran Biaya (Aspal Buton)

(Aspai Buton)									
NO	JENIS PEKERJAAN	SATUAN	VOLUME	HARGA SATUAN	TOTAL BIAYA				
I	PEKERJAAN TANAH								
	Timbunan	M3	1,033.20	118,516.87	122,451,630.08				
II	PEKERJAAN LAPIS PONDASI								
	Lapis Pondasi Aggregat Kelas A	M3	861.00	687,622.13	592,042,653.93				
III	PEKERJAAN ASPAL								
	lapis Aus Asbuton AC-WC	Ton	7,575.05	1,630,205.41	12,348,887,491.02				
	Laston lapis Antara Modifikasi AC-BC	Ton	18,180.12	1,553,768.66	28,247,700,691.04				
	Laston Lapis Pondasi Modifikasi AC Base	Ton	2,272.51	1,454,561.80	3,305,506,236.12				
	(A) Jumlah Harga Pekerjaan (termasuk	44,616,588,702.19							
	(B) Pajak Pertambahan Nilai (PPN)=	4,461,658,870.22							
	(C) JUMLAH TOTAL HARGA PEKE	49,078,247,572.41							
	(D) Dibulatkan	49,078,247,000.00							
	Terbilang Empat Puluh Sembilan Milyar Tujuh Puluh Delapan Juta Dua Ratus Empat Puluh Tujuh Ribu Rupiah								

Tabel 12. Rekapitulasi Anggaran Biaya (Aspal Laston)

NO	JENIS PEKERJAAN	SATUAN	VOLUME	HARGA SATUAN	TOTAL BIAYA	
I	PEKERJAAN TANAH					
	Timbunan	M3	1,033.20	118,516.87	122,451,630.08	
I	PEKERJAAN LAPIS PONDASI					
	Lapis Pondasi Aggregat Kelas A	M3	861.00	687,622.13	592,042,653.93	
${\rm I\hspace{1em}I}$	PEKERJAAN ASPAL					
	Laston lapis Aus AC-WC	Ton	6,060.04	1,410,642.31	8,548,548,824.29	
	Laston lapis Antara AC-BC	Ton	9,090.06	1,450,642.02	13,186,423,000.32	
	Laston Lapis Pondasi AC Base	Ton	2,272.51	1,357,681.48	3,085,344,740.11	
	(A) Jumlah Harga Pekerjaan (termasuk	25,534,810,848.74				
	(B) Pajak Pertambahan Nilai (PPN)=	2,553,481,084.87				
	(C) JUMLAH TOTAL HARGA PEKE	28,088,291,933.62				
	(D) Dibulatkan		28,088,291,000.00			
	Terbilang Dua Puluh Delapan Milyar Delapan Puluh Delapan Juta Dua Ratus					

5. KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah sebagai berikut:

1) Dalam perencanaan tebal perkerasan dengan umur rencana 20 tahun menggunakan Metode Manual Desain Perkerasan Jalan Nomor 02/M/BM/2013 diperoleh nilai LHR sebesar 12,677,899 CESA dengan tebal perkerasan untuk tiap lapisan surface laston lapis aus AC WC dengan tebal 4 cm, laston antara AC BC 6 cm, laston lapis pondasi AC Base 16 cm, lapis pondasi aggregat A 30 cm, Timbunan Pilihan 35 cm dan menggunakan Metode

- Analisa Komponen (Bina Marga) overley AC WC modifikasi asbuton tebal 5 cm.
- 2) Untuk perbedaan biaya menggunakan perkerasan aspal modifikasi asbuton lebih mahal dari yang perkerasan aspal beton semen selisih sebesar Rp. 20.989.956.000,untuk itu pemerintah perlu mempertimbangkan desain untuk perkerasan yang digunakan mengingat selisih biaya yang digunakan untuk pemeliharaan rutin jalan setelah selesai waktu kontrak cukup besar karna ruas tersebuat akan menjadi jalur perindustrian.

DAFTAR PUSTAKA

- Djoko Murjono, MSc, 2013, Manual Desain Perkerasan Jalan Nomor 02/M/BM/2013.
- Departemen Pekerjaan Umum, 2012, Perancangan Tebal Perkerasan Lentur, Badan Penerbit Pekerjaan Umum, Bandung
- Kementerian Pekerjaan Umum, 2002, Pedoman Perencanaan Tebal Perkerasan Lentur Pt T-01-2002-B, Badan Penerbit Pekerjaan Umum, Jakarta
- Shirley L. Hendarsin, 2000, Perencanaan Teknik Jalan Raya, Penerbit Politeknik Negeri Bandung Jurusan Teknik Sipil, Bandung
- Sukirman Silvia, 2010, Perencanaan Tebal Struktur Perkerasan Lentur, Penerbit Nova, Bandung

.